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Abstract—Proactive learning extends active learning by con-
sidering multiple labelers with different accuracies and costs,
thus optimizing labeler selection as well as instance selection.
In this paper, we propose a novel method to estimate labeler
accuracy per class and to select labelers based on both cost and
estimated accuracy, combined with an ensemble approach called
multi-class information density (MCID) as a selection criterion.
Our approach relaxes the common assumption found in past
work that labeler accuracy is independent of class for multi-class
learning, and by estimating the class-conditional accuracy better
assigns instances to labelers. Results on several datasets with both
real and simulated experts strongly demonstrate the efficacy of
these methods.

I. INTRODUCTION

The challenge in many machine learning or data mining
tasks is that while unlabeled instances are abundant, acquiring
their class labels often requires extensive human effort. The
active learning paradigm addresses the challenge of insufficient
labels by interactively optimizing the selection of queries [1],
[2]. Several studies have shown that active learning reduces
the sample complexity in a variety of applications, including
network / graph analysis [3], text mining [4], [5], etc. However,
active learning relies on tacit assumptions which prove limiting
for real problems and applications. Primarily, active learning
assumes the existence of a single omniscient labeling “oracle”,
whereas in real life it is more common to have multiple sources
of annotations with different reliabilities or areas of expertise.
In addition, active learning assumes that labeling different
instances incurs uniform cost, regardless of the difficulty or
the expected accuracy inherent in each annotation task. Some
research has addressed cost-sensitive active learning, but only
with respect to instances and features [6], [7].

Proactive learning has been proposed as a means to relax
the unrealistic assumption of a single omniscient labeling
oracle, permitting multiple labelers with different accuracies,
different availabilities and different costs [8], [9], [10], [11].
This line of work has shown that proactive learning extends
its reach to practical applications by combining estimation
(learning) of the labeler accuracy with maximum utility of
the labeler and instance selection. However, the prior work
assumes that labeler accuracy is independent of labels in multi-
class problems, calculating only an average accuracy across
labels. In this paper, we address this limitation by explicitly
estimating the dependency between label and labeler in order

to optimize the assignment of new instances to labelers based
on class priors or best-estimate of class membership.

We illustrate the novel contribution of the proposed method
in the following example. Consider, for instance, the multi-
class problem of a medical diagnosis of a patient with a disease
that we know very little about (uncertainty in data): given
multiple physicians who specialize in completely different
areas (e.g. an oncologist, a cardiologist, or an internal medicine
doctor), we need to assign one of the experts to diagnose
the patient correctly (proactive learning selection). Querying
an expert who has the best overall diagnosis performance
across multiple domains (assuming uniform reliability across
classes) may not give the most accurate results (analogous
to the previous proactive learning methods [9]), because the
chosen expert might lack knowledge in the specific disease
of the patient. If we know that the patient has seemingly
cancer symptoms (posterior class probability) and that an
oncologist usually has the deepest understanding of cancer
issues (estimated labeler accuracy given a specific class), we
can leverage this information to better delegate a task to
its respective expert. Note that this is indeed a real world
challenge, as shown in our experiment with the Diabetes
dataset in Section III.

Similarly, our new method estimates labeler accuracy on
a per-class basis, or per subset-of-classes basis, providing a
considerably new level of flexibility in proactive learning.
A probabilistic approach to model annotator accuracy in a
binary classification task was proposed by [12], but modeling
annotator performance over the entire data in multi-classes is a
complex task that requires a large number of training examples.
Our method efficiently reduces the cost and complexity in-
volved in estimating the labeler accuracy over multiple classes
by employing the reduced per-class estimation method.

Another approach proposed by [13], [14], [15] that handles
unreliable annotators in crowdsourcing scenarios is to query
multiple annotators repetitively to estimate the ground truth
label for each instance. The integration of judgements from
crowd is typically done via majority vote or selective sampling,
but these work do not comprise estimating individual per-
task (per-class) expertise for selective recruitment of crowd
members. In addition, these methods are not desirable in
active learning scenarios because querying multiple annotators
repeatedly for a single instance incurs multiple costs, whereas
our method tries to find the one most cost-efficient expert who
can answer the query reliably.



The framework that we propose is flexible and can work
with any instance selection criterion or any supervised learn-
ing method. In order to further improve the effect of the
proposed algorithm, we also propose a new density-based
sampling strategy for multi-classes that considers the concept
of conflictivity of the label distribution. We integrate our
metrics as an ensemble method [16], [17], [18], and show
that our selection criterion outperforms the traditional density-
weighted sampling methods [19], [20], especially when there
are multiple unreliable annotators.

The rest of the paper is organized as follows: Section II
describes in detail the proposed proactive learning framework
and presents the new density-based sampling strategy. The
empirical results are reported and analyzed in Section III, and
we give our concluding remarks and proposed future work in
Section IV.

II. METHOD

In this section, we present a proactive learning method for
multi-classification tasks when multiple domain experts are
present. In our scenario, we assume that there exist multiple
narrow experts and one meta oracle. A narrow expert has
expertise in the subset of classes from the data, and each
expert’s expertise may or may not overlap. The probability of
getting a correct answer given a query depends on the difficulty
of the classification task for the expert. In other words, a
narrow expert is more reliable in annotating the data for which
the ground truth labels are within the expert’s expertise. A meta
oracle, on the other hand, has expertise in every category. The
cost of each expert or a meta oracle varies depending on the
difficulty of the task, the skewness of the data, and its range
of expertise areas. We experiment with various combinations
of cost ratios to simulate different real-world situations.

A. Proactive Learning with Multiple Domain Experts

In proactive learning, we jointly select the optimal oracle
and the instance at which the current system’s performance
would best improve. As such, the solution to the problem is
casted as a utility maximization subject to a budget constraint
[8]. The objective of the problem can thus be formulated as:

max
S⊂UL

E[V (S)]− λ(
∑
k

tk · Ck)

s.t.
∑
k

tk · Ck ≤ B,
∑
k

tk = |S|
(1)

where S is the set of instances to be sampled, UL is the set
of unlabeled samples, and E[V (S)] is the expected value of
information of the sampled data to the learning algorithm.
V (S) may be replaced by any active learning selection cri-
terion, such as the uncertainty-based sampling [21]. k ∈ K
denotes the chosen oracle from the set of experts, and λ is
a weighting parameter that determines how much the value
of information is penalized by the oracle cost. Ck and tk
refer to the cost of the chosen expert k and the number
of times it is queried, respectively. B is the total amount
of budget for querying oracles. However, Equation 1 is a
complex optimization problem because the learning function
is updated at every iteration while the samples to be queried
and their labels are unknown to the learner. Therefore, we

Algorithm 1 Proctive Learning with Multiple Experts
Input: a multiclass classifier f , the pre-defined set of classes
C, labeled data L, unlabeled data UL, budget B, oracles
k ∈ K with cost Ck, each with expertise in some classes
Output: f
Obtain P (ans|y = c, k), ∀c ∈ C, k ∈ K from Algorithm 2
Let CT be the cost spent so far, CT = 0
while CT < B do

Train f on L
Choose (x∗, k∗) = argmax

k∈K,x∈UL
U(x, k) (Eq. 3)

Query the label y∗ = query(x∗, k∗)
L = L ∪ {(x∗, y∗)}, UL = UL− {(x∗, y∗)}
CT = CT + Ck

end while

employ a greedy approximation of the problem which chooses
a small batch of samples to be queried at every iteration that
maximizes the utility under the budget constraint:

(x∗, k∗) = argmax
x∈UL,k∈K

U(x, k) (2)

where U(x, k) refers to a utility score when a sample x is
annotated by an oracle k. We define the utility score such that
it incorporates the reliability and the cost of an oracle as well
as the base value of information of an instance. This ensures
that the learner does not always choose the most reliable, and
the most costly oracle, but encourages the learner to select the
most cost-effective pair of an instance and an expert that is
likely to give a correct answer. Thus, we can formulate the
utility score as follows:

U(x, k) =
V (x) · P (ans|x, k)

Ck
for k ∈ K (3)

where V (x) is the value of the information of the sampled data
to the learner, and P (ans|x, k) is the probability of receiving
the correct answer from an expert k given the sample x. We
therefore assign a higher utility for the instances that have a
higher value of information and a higher probability of being
labeled correctly, while having a cheaper cost of annotation.
Algorithm 1 describes the cost-optimized proactive learning
process using the utility function formulated above. In most
of the real world datasets, however, the accuracy information
of the labeling sources P (ans|x, k) is not given to the learner,
and thus it needs to be estimated prior to the active selection
process. While there may be various ways to estimate the
accuracy of the labeling sources, the challenge is to minimize
the number of queries that need to be made to each expert when
there does not exist any query history a priori. The next section
describes an efficient implementation of estimating expertise
of labeling sources through selective sampling and the reduced
per-class estimation.

B. Expertise Estimation

We assume that the oracle’s expertise is distinctly aligned
over a subset of classes rather than over the entire distribution
of the data. We can then reduce the estimated labeling accuracy



Algorithm 2 Expertise Estimation for Multiple Experts
Input: Labeled data L, unlabeled data UL, oracles k ∈ K
each with expertise in some of the classes
Output: P (ans|y = c, k) ∀c ∈ C, k ∈ K
if |L| > 0 for each c ∈ C then

for each x and ground truth label (x, z) ∈ L do
for each k ∈ K do
y(k) = query(x, k)
Update P (ans|k, y = c) with h(y(k), z)

end for
end for

else
Choose n samples randomly from UL
for each sample x do

Initialize v(c) = 0 ∀c ∈ C
for each k ∈ K do
y(k) = query(x, k)
v(y(k)) = v(y(k)) + 1

end for
ymaj = max

c∈C
v(c)

Set P (ans|k, y = ymaj) with h(y(k), ymaj) ∀k
end for

end if

P (ans|x, k) as follows:

E[P (ans|x, k)] =
∑
c∈C

P (y = c|x) · P (ans|k, y = c) (4)

where C is the set of categories in a multi-classification task,
P (y = c|x) is the class posterior probability of the label for
the sample x being c (predicted by the learner), which is an
estimate of the true underlying label density. P (ans|k, y = c)
is the estimated probability of the expert k answering correctly
for the label c. In other words, we integrate the learner’s
prediction of an instance with the expert’s class-wide labeling
accuracy. With the given formulation of P (ans|x, k), the util-
ity function favors the samples that have a higher probability
of belonging to a certain label c, which an expert k is has
expertise in. The meta-oracle will almost always have a higher
value for P (ans|x, k), but the overall utility will be dampened
by a higher Ck as in Equation 3.

We consider two different scenarios for estimating
P (ans|k, y = c) (detailed in Algorithm 2): (1) when there
are labeled samples already available (assuming ground truth),
and (2) when there is no labeled sample at all. If we are
given the ground-truth labels for n instances, we inquire for
the labels of those instances to each expert and compute
the labeler accuracy per class with the available ground-truth
labels. Therefore, we define the empirical labeler accuracy per
class as follows:

P (ans|k, y = c) =
1

n

n∑
i=1

h(y
(k)
i , zi) ∀k ∈ K (5)

where y
(k)
i is the prediction of xi by an expert k, zi is

the ground-truth label of xi, and h(y
(k)
i , zi) ∈ {1, 0} is an

indicator function which is equal to 1 if y(k)i = zi and 0 oth-
erwise. When there is no labeled sample available, we choose
n samples from the unlabeled set, and inquire for the label

of each sample to every expert. We estimate the ground-truth
label of each instance by majority vote on experts (= ymaj),
and compute P (ans|k, y = c) with h(y

(k)
i , ymaji ). Note that

P (ans|k, y = c) is independent of x, which thus gives only a
brief class-sensitive belief about the expert’s labeling accuracy.
This simplified estimation allows for practical benefits in
estimating labeler accuracy given the limited budget for the
expertise discovery phase. In our experiments (Section III-B),
we show that this brief knowledge of class-wide expertise
greatly improves the performance when incorporated into the
active learning selection formula. We also present the empirical
analysis of the performance for varying degrees of errors for
the estimated expertise.

C. Density-based Sampling for Multi-classification Tasks

While our framework is flexible and can work with any
selection strategies, we propose a new density-based sampling
method for multiple classes with multiple imperfect oracles to
further improve the effect of the proposed algorithm.

Some of the most notable work done on the density-
weighted uncertainty sampling (DWUS) strategies for active
learning include the pre-clustering method [19], [20], which
incorporates the prior density p(x) of the data in the selection
criterion. This method encourages the selection of more rep-
resentative samples (e.g. centroids of denser clusters) at each
query iteration, and avoids repetitively querying the samples
that are in the same cluster.

We extend the previous work to accommodate for a multi-
classification problem where labels are acquired from unreli-
able experts. First of all, if the expert that labeled a sample in
a cluster is not reliable, we should in fact encourage querying
samples from that cluster until we obtain a more credible
label. Second, if a cluster encompasses conflicting opinions,
or a cluster is placed over the decision boundaries, we should
encourage querying from that cluster to better tune the decision
boundaries between neighboring classes.

As such, we propose a new multi-class information density
(MCID) as follows, which comprises of three components: (1)
density, (2) unknownness, and (3) conflictivity. The density
component measures how densely samples are positioned
around a given point, and the unknownness component mea-
sures how many samples are labeled thus far. The conflictivity
component measures how heterogeneous the label distribution
is around a given sample. The conflictivity term encourages
the learner to favor a cluster that still has conflicting and
unresolved class distribution over a slightly denser cluster with
unanimous class distribution.

A simple yet efficient implementation of MCID is to pre-
cluster the dataset and calculate the three components in each
cluster locally. For a given cluster q ∈ Q, where Q refers to
a set of clusters of the dataset and q is a set of labeled and
unlabeled samples within the cluster, the MCID of a sample
is defined as follows:

ρ(q, x) = p(x) · |qUL|
|q|

· (−
∑
c∈C

P (y = c|q) · logP (y = c|q))
(6)



TABLE I. OVERVIEW OF DATASETS.

Dataset # Experts # Classes Size

Diabetes 130 U.S. Hospitals 3 3 13300
20 Newsgroups 5 20 7000
Landsat Satellite 3 6 3000

Image Segmentation 3 7 2310
Vehicle 4 4 946

where ρ(q, x) is the MCID of a sample x in a cluster q,
p(x) is the density at a point x, qUL is a set of unlabeled
samples within the cluster, and C is the set of label classes.
We induce p(x) using a |Q| Gaussian mixture model with
weights P (q), hence p(x) =

∑
q∈Q p(x|q)P (q), where p(x|q)

is a multivariate Gaussian sharing the same variance σ2 [19]:

p(x|q) = (2π)−d/2σ−d exp{−||x− cq||
2

2σ2
} (7)

where cq is the centroid of the cluster q. We estimate the cluster
prior P (q) via an EM procedure:

P (q|xi) =
P (q) exp{−||xi−cq||2

2σ2 }∑
q∈Q P (q)

′ exp{−||xi−cq||2
2σ2 }

P (q) =
1

N

∑
i=1...N

P (q|xi)
(8)

where N is the size of the sample set. The second term in
Equation 6 measures the proportion of samples known at each
iteration. The last term is the entropy of class distribution
within the cluster, which approximates the conflictivity of the
cluster.

Note that the MCID measure does not contain any knowl-
edge about how informative each individual point is. Therefore,
the ultimate value function of an instance is given as a combi-
nation of the basis selection criteria φ(x) (e.g. the uncertainty-
based selection [21], etc.) and the MCID. Therefore:

V (x) = φ(x) · ρ(q, x)β (9)

where β ∈ (−∞,∞) is a weight parameter. For simplicity, in
the following experiments, we use β = 1 and φ(x) = H(x) =
−
∑
y∈Y P (y|x) · logP (y|x), or the entropy of the probability

distribution [22].

III. EXPERIMENTAL EVALUATION

Table I shows the summary of the datasets we used in
our experiments. The Diabetes 130 U.S. Hospitals dataset
[23] contains the attributes that identify the medical specialty
of each annotator, as well as the specific diagnosis type
(label) and medical records (attributes) of each patient instance.
For our experiment, we make a subset of the dataset by
choosing the three frequent diagnosis types, and consider three
major medical specialties (Internal Medicine, Family/General
Practice, Surgery-General). Each instance is annotated by only
one annotator with a single medical specialty, and therefore we
assume that labels we query come from an expert classifier
model which is trained over the instances that each respective
expert has annotated.

The rest of the datasets in Table I do not have any annotator
information, and thus we simulate multiple narrow experts as

TABLE II. COMPARISON OF ERROR RATES OF MCID VS DWUS VS US

Dataset Cost Classification Error Rates

MCID DWUS US

Diabetes

0.25 0.402 0.411 0.423
0.50 0.374* 0.407 0.409
0.75 0.362* 0.399 0.400
1.00 0.354* 0.393 0.398

20 Newsgroups

0.25 0.508 0.521 0.516
0.50 0.431* 0.470 0.488
0.75 0.388* 0.428 0.453
1.00 0.350* 0.381 0.388

Vehicle

0.25 0.333 0.335 0.350
0.50 0.281 0.294 0.301
0.75 0.260* 0.279 0.286
1.00 0.242* 0.266 0.271

follows. We assume that the narrow experts’ expertise does not
overlap but together they cover every category. For example,
we train 5 narrow experts for the 20 Newsgroups dataset, each
specializing in 4 (=20/5) unique classes (See Table I). In order
to simulate the reliability of the oracles with different expertise,
we assume that a narrow expert resembles a classifier trained
on the dataset of which the labels of the samples in its non-
expertise categories are partially noised. The noise ratio was
adjusted so that the overall labeling accuracy is around 50%
for each non-expertise category. The meta oracle is trained on
the entire dataset without any artificial noise. This simulates a
realistic situation where every annotator has a varying degree
of non-zero error rates on different classes. The results are
averaged over 10 runs for every experiment.

A. Multi-class Information Density

We compared the proposed multi-class information density
(MCID) method (detailed in Section II-C) on several datasets
with two other baseline selection criteria: (1) US, which
uses the traditional uncertainty sampling (US) method, (2)
DWUS, which employs the widely used density-only weighted
uncertainty sampling (DWUS) method [19], [20].

Table II shows the classification error rates at four different
stages of active learning (cost = 0.25, 0.50, 0.75, 1.0), where
each label is obtained from a randomly chosen narrow expert
to allow for a realistic and heterogeneous label distribution.
Both DWUS and MCID methods outperform the baseline (US),
which greatly saves the annotation cost to converge. There is
a time-variant performance difference on these two methods:
the DWUS method performs almost the same as the MCID
method at the beginning, which indicates that the conflictivity
component of the measurement does not improve the perfor-
mance when not enough labels are given. Once enough labels
are given (cost ≥ 0.5), the MCID method outperforms the
previous density-only weighted baseline (DWUS). Statistically
significant improvements (p < .05) over the baselines at each
cost are marked as *.

B. Multiple Experts

The following figures show the results for the proposed
proactive learning algorithm on five different datasets: Diabetes
130 U.S. Hospitals, 20 Newsgroups, UCI Landsat Satellite,
UCI Statlog Image Segmentation, and UCI Vehicle. For each
dataset, we vary the cost ratio of a narrow expert to the meta
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(c) Cost Ratio = 1:11

Fig. 1. Comparison of error rates on the Diabetes 130 U.S. Hospitals Dataset with different cost ratios (when expertise was estimated via ground truth samples).
The X-axis denotes the normalized total cost, and the Y-axis denotes the classification error. Our proposed methods are marked as * in the legends.
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(c) Cost Ratio = 1:5

Fig. 2. Comparison of error rates on the 20 Newsgroup Dataset with different cost ratios (when expertise was estimated via ground truth samples). The X-axis
denotes the normalized total cost, and the Y-axis denotes the classification error. Our proposed methods are marked as * in the legends.

oracle, the initial number of labeled / unlabeled samples to
estimate P (ans|k, y = c), and the proactive learning methods.

Figures 1 and 2 show the performance of the proposed
algorithm with varying cost ratios on the Diabetes dataset
and the 20 Newsgroups dataset, respectively. Due to space
constraints, we present the rest of the results in Tables III and
IV.

There are three baselines that were considered: (1) Best Avg
(Dotted Cyan), where the learner always asks one of the narrow
experts that has the highest average P (ans|x, k) under the
assumption that labelers are uniformly accurate across multiple
classes, (2) Meta (Dashdot Blue), where for a higher price,
the learner always asks the meta oracle that has expertise
in every category, and (3) Best Avg+Meta (Dashed Green),
which jointly chooses between the more reliable meta oracle
and the fallible narrow expert under the uniform reliability
assumption. Note that the baseline (3) refers to the proactive
learning method proposed earlier by [9]. For all of the baseline
methods, we use our proposed MCID method as a criterion for
the instance selection.

The two proactive learning methods that we propose
(marked as *) are: (1) Narrow (Solid Black), where the learner

selectively chooses the best pair of a sample and a narrow
expert that yields the highest utility at each iteration, and (2)
Narrow+Meta (Solid Red), which also includes the meta oracle
in the pool of experts. We show that each proposed method
has an advantage over each other depending on the availability
and the affordability of the meta oracle.

In all of our experiments, Narrow and Narrow+Meta
significantly outperform the Best Avg baseline. When the meta
oracle is expensive (as in Figures 1(c), 2(b), 2(c)), Narrow
significantly outperform the Meta and the Best Avg+Meta
baseline (p < .01). In reality, the meta oracle would be
significantly more expensive than the narrow experts or it may
not exist at all. The results are thus promising because the
proposed method can perform very well even in the absence
of the meta oracle. When the meta oracle is cheaper (Figures
1(a), 2(a)), on the other hand, the joint Narrow+Meta method
outperforms both the Meta baseline and the Narrow method
(p < .01), which indicates that the proposed algorithm jointly
optimizes between the meta oracle and the narrow experts in
the most cost-efficient way. While the joint Best Avg+Meta
baseline [8] outperforms the other two baselines when the
cost ratio is high, the improvement is not as significant as



TABLE III. COMPARISON OF ERROR RATES ON THE UCI DATASETS (WHEN EXPERTISE WAS ESTIMATED VIA GROUND TRUTH SAMPLES)

Classification Error

Dataset Cost Ratio Cost *Narrow *Narrow Best Avg Meta Best Avg+Meta +Meta

Landsat Satellite 1:2

0.25 0.311 0.329 0.335 0.331 0.326
0.50 0.217 0.223 0.246 0.283 0.249
0.75 0.133 0.155 0.166 0.237 0.195
1.00 0.069 0.098 0.119 0.185 0.128

Image Segmentation 1:2

0.25 0.111 0.126 0.142 0.203 0.169
0.50 0.064 0.080 0.081 0.060 0.130
0.75 0.050 0.047 0.050 0.043 0.113
1.00 0.045 0.032 0.041 0.029 0.118

Vehicle 1:1.5

0.25 0.302 0.260 0.262 0.252 0.325
0.50 0.231 0.201 0.211 0.210 0.261
0.75 0.166 0.141 0.179 0.168 0.229
1.00 0.132 0.103 0.148 0.139 0.215

TABLE IV. COMPARISON OF ERROR RATES (WHEN EXPERTISE WAS ESTIMATED VIA MAJORITY VOTE)

Classification Error

Dataset Cost Ratio Cost *Narrow *Narrow Best Avg Meta Best Avg+Meta +Meta

Diabetes 1:11

0.25 0.355 0.375 0.430 0.471 0.421
0.50 0.317 0.346 0.348 0.401 0.399
0.75 0.276 0.301 0.306 0.343 0.372
1.00 0.269 0.283 0.297 0.308 0.367

20 Newsgroups 1:5

0.25 0.461 0.490 0.501 0.559 0.521
0.50 0.366 0.394 0.431 0.472 0.466
0.75 0.289 0.335 0.343 0.397 0.395
1.00 0.221 0.298 0.306 0.355 0.357

Landsat Satellite 1:2

0.25 0.321 0.331 0.351 0.329 0.334
0.50 0.217 0.236 0.283 0.279 0.248
0.75 0.138 0.184 0.223 0.234 0.199
1.00 0.078 0.116 0.129 0.185 0.126

Image Segmentation 1:2

0.25 0.154 0.169 0.171 0.206 0.177
0.50 0.087 0.060 0.062 0.062 0.135
0.75 0.056 0.042 0.039 0.045 0.112
1.00 0.042 0.026 0.028 0.031 0.118

Vehicle 1:1.5

0.25 0.301 0.251 0.246 0.250 0.326
0.50 0.248 0.210 0.209 0.208 0.277
0.75 0.182 0.167 0.170 0.169 0.263
1.00 0.141 0.112 0.142 0.140 0.247

in our proposed methods for this experiment. This is because
the previous work fails to capture the noisy labeler accuracy
which varies by class. Tables III and IV show similar results
on other UCI datasets. Note that the proposed algorithm
works successfully even when there is no ground truth sample
available to estimate expertise. While the ground truth case
generally performs better than the majority vote estimation
method, they eventually converge at almost the same accuracy
level (Tables III and IV).

Figure 3 shows the difference in the final error rate at
convergence as a function of the initial budget that was set
aside to estimate expertise of each narrow expert. We assume
that acquiring a label to estimate expertise incurs the same cost
as querying an expert during the active learning process. If the
learner spends a large enough budget to estimate expertise,
it can more accurately delegate an instance to a narrow
expert that has expertise for the chosen instance. Ground truth
(Solid Black) represents the convergence accuracy when we
employ the Narrow method, where the expertise was estimated
using the ground truth samples with the marked proportion of
the budget. Majority vote (Solid Red) refers to the Narrow

method where the expertise was estimated using the majority
vote method. As a baseline, we present the final accuracy
when there is no prior knowledge of expertise, thus randomly
choosing an expert at each iteration (Dotted Black). We also
present an oracle bound (Dotted Blue), where we assume that
we have perfect estimation of expertise of each expert, thus
delegating an instance to the correct expert every time. For all
of the UCI datasets that were tested, the results show that the
proposed method works significantly better than the baseline
even with a limited budget to estimate expertise. This result
shows that even with the imperfect estimation of expertise
we can still improve the performance greatly. The ground
truth method utilizes improved estimation of expertise, thus
outperforming the majority vote method.

IV. CONCLUSION

The novel contributions of the this work are as follows: we
proposed an efficient proactive learning algorithm for which
there are multiple class-sensitive experts with varying costs
whose expertise are distinctly aligned over multiple classes.
The proposed method formulates a cost-driven decision frame-
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Fig. 3. Final error rate at convergence as a function of the initial budgets set aside for expertise estimation on the UCI datasets, in proportion to the total
budget spent to acquire labels until it reaches convergence.

work which maximizes the utility across oracle-example pairs.
We showed that our algorithm efficiently delegates each narrow
expert to an unlabeled instance that the chosen expert is
most likely to have expertise in. The empirical results on the
datasets with both real and simulated experts demonstrate the
effectiveness of this approach under different cost conditions.
Specifically, when there exists an affordable meta oracle, the
proposed algorithm jointly optimizes between the meta oracle
and the narrow experts. Our approach works sufficiently well
even with the imperfect estimation of expertise due to a limited
budget. We also implemented a new density metric for multi-
class classification which considers the conflictivity of the
label distribution. The result shows an improvement over the
traditional density-only-weighted method, especially when the
annotators are not reliable.

This paper allows for a practical and efficient application
of active learning in real world tasks such as crowdsourcing
or data mining. To continue this work, we will investigate the
theoretical min-max bounds of the proposed algorithm under
different reliabilities and costs of the experts. We will also
extend our work to a new crowdsourcing scenario with a larger
pool of experts, where the challenge is to efficiently estimate
the labeler expertise as a group, rather than as individuals. We
also plan on formulating the theoretical condition in which the
conflictivity metric would improve the performance over the
density-only-weighted method.
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